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An cfficient method for constructive cnumeration ol graphs is suggested. The method is based on the so-
called semicanonical numbering of graphs, that is a numbering much more restrictive than the cooperative
numbering. Graph-theoretical properties of the semicanonical numbering make it possible to formulate an
exhaustive and nonredundant constructive enumcration of graphs. The approach allows an easy intro-

duction of specifications for molecular graphs.

The problem of constructive enumeration of molecular graphs has been successfully
solved only for acyclic molecules! = *, The constructive enumeration of cyclic mole-
cular graphs is usually solved® = ¥ by making use of an enormous number of isomor-
phism checks. Some additional conditions are introduced and used to reduce a priori
the number of the produced graphs — candidates to be verified in the subscquent
isomorphism checks!?. To this purpose many beautiful group-theorctical and combi-

natorial concepts have been claborated'® = 1%,

19 = 20 4 graph-theoretical method, suitable for the

Recently, we have suggested
constructive enumeration of molecular graphs, which employs the canonical numbering
based on the maximum code produced by the lower triangle part of adjacency matrix.
Almost simultancously a very similar approach (employing the maximum code produ-
ced by the upper-triangle part of adjacency matrix) has been published by Hendrickson
and Parks?!. Both these approaches use the concept of the so-called cooperative numbe-
ring of graphs®! = = initially suggested by Morgan®2. It substantially reduced the total
number of all possible numberings (n! problem) to a much smaller, more manageable
number.

Fifteen years ago a series of basic Faradzhev’s published papers™ =27 (see also ref.™)
was devoted to the constructive enumeration of combinatorial objects. The papers
hardly received any attention, being rather difficult 1o rcad and partly published in a
hardly accessible journal. The principal ideas of this method were described by a
combination of rather abstract mathematical tools and highly sophisticated algorithms,
without giving any examples.
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Constructive Enumeration of Graphs 755

In the present paper Faradzhev’s concept of semicanonical adjacency matrix is
reconstituted, even though idcas leading to theorems 2 — 4 could be derived from
Faradzhev’s works. Basic improvements of this approach in the present paper consist in
(i) a reformulation of Faradzhev’s method by making use simple but sufficiently preci-
sc algebraical and graph-theoretical tools and (ii) in an introduction of further condi-
tions for canonicity of the so-called semicanonical matrices used in constructive
cnunicration of graphs.

The semicanonical numbering is much more restrictive than the cooperative numbe-
ring ol graphs, which we have used carlier. Although a semicanonically numbered
graph is also cooperative numbered, the reverse statement, in general, is not truc.
Morcover, there exists a simple proof that cach canonically numbered graph (according
to the maximum code of the upper-triangle part of adjacency matrix) must also be
semicanonically numbered. Therefore, when looking for the canonically numbered
graphs it is entirely sufficient to apply only those numberings that arc a priori scmi-
canonical. This property allows the formulation of an efficient recurrent method for the
constructive cnumeration of graphs. To our knowledge and experience, the constructive
cnumeration employing the notion of semicanonical numbering offers the most ¢lli-
cient algorithm known.

THEORETICAL

Basic Concepts

The purpose of this scction is to present a concept of the so-called canonical adjacency
matrix, which belongs to the principal notions of Faradzhev’s approach? to constructi-
ve enumceration of graphs.

Let 7,, (for p > 0 and g 2 0) be a family of adjacency matrices A = (a;;) of simple
graphs with p vertices and ¢ cdges®™ . Vertices will be labeled by the first p natural
numbers.

A permutation R = (ry, ro, ..., ry) of pobjects (1, 2, .., p) is uniquely represented®®
by the so-called permutation matrix R composed of zero and unit entrics, where cach
row/column contains just onc unit entry. A set (called symmetry group) of all permu-
tation matrices of p objects will be denoted by ..

Definition 1. Two adjacency matrices A, A,E ¥
there exists a permutation matrix R € Sp such that

py are called equivalent, A=A, if

A = R'A.R. (n

Two cquivalent matrices A, and A,, A, = A., arc represented by graphs G| and G,
respectively, that are isomorphic, G, = G,, formally A, = A, < G, = G..
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756 Pospichal, Kvasni¢ka:

According to the above introduced relation of cquivalence between adjacency matri-
ces, the family 7,, may be decomposed onto disjoint subfamilies that are composed of
equivalent matrices,

Fo = HIUTRU @

where A, A, € jrgi @ A =A,.
We assign to cach adjacency matrix A € Fpq & string composed of its upper-triangle
. 2312
cenlrics™ <

[A] = (@3 a doz .oy ) 3

Thesc strings determine unambiguously the corresponding adjacency matrix. The
strings arc related by the following three lexicographical relations: “cqual 107, “smaller
than”, and “greater than”, i.c. [A;] = [A,], [A,] < |A,], and [A]] > | A,], respectively.
There exist also other possibilitics how to build such a strings®. The present onc has
not any chemical meaning, it was chosen only for its useful propertics appropriate for
constructive cnumeration of graphs.

Each subfamily 5‘[,‘3 is represented by its code. We introduce two types ol codes,
corresponding to the maximum or minimum value of strings of matrices from the
subfamily 78,

CODE; = max [A], (4a)
Aer,

code; = min [A]. (4b)
A€

The entity CODE;, determined as the maximum value of strings of adjacency matri-
ces from the subfamily #$), was initially introduced by Hendrickson ct al.2* for purpo-
ses of chemical informatics. Recently, Hendrickson et al.*! have used this code also for
the constructive enumeration of graphs. The second alternative (dual) approach, based
on the minimum valuc of their strings, has been introduced and extensively applied by
Randic®. In our forthcoming considerations we show (sec Theorem 1) that these two
different approaches are closely related.

The definitions (4a) — (4b) may be alternatively rewritten as follows:

CODE;, = max |[RT AR], (5a)
REs,
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Constructive Enumeration of Graphs 757

code; = min [RT A R], 5b)
Res,

where A € ?f,‘g .
Definition 2. Adjacency matrices A , Ae f&)l with the codes determined by

A : coDE = [A] = CODE(A), (6a)

A : code, = [A] = code(A), (6D)
arc called the canonical adjacency matrices.

Of course, there exist many other ways how to determine this concept. The present
way of determination of canonical adjacency matrices has been mainly determined by
its uscful properties for our constructive enumeration of graphs. We have 1o emphasize
that the term “canonical” should be distinguished for two scparate cases. It is necessary
to specily whether the nmxunum or the “minimum” code is uscd.

The canonical matrix A (or A) is a rcprLsLnlallvc of the subfamily 7‘) A graph G
(G) assigned to the canonical adjacency matrix A (A) will be called th canonically
numbered graph.

Let A = (Eij) be a matrix assigned to an adjacency matrix A € Fpy as @ complement
determined by

0 (ifi=j),
a. =1 (ili=jand a;=0), (7
0 (if i=j and a,j=1).

This means, that the matrix Ais also an adjacency matrix and it belongs to a family
Foq» Where g = (p(p - 1)/2) - q. The adjacency matrix Ais called the complement of A.
In a similar way we introduce a complement of a string [A], formally | [A] = [A], c.g
1 (111100) = (000011). A graph G assigned to the adjacency matrix A is nothing Llsc
than a complementary graplt G assigned to the graph G.

Theorem 1. The codes CODE(A) and code(A) arc related by
code(A) = CODE(A). (8)
According to this theorem code(A), determined as the minimum value of strings, sce

(4b) or (5b), may be simply constructed in such 4 way that we first construct a “maxi-
mum” code of the matrix A. Then a complement of the produced string determines

Collect. Czech. Chemn. Commun. (Vol. 58) (1993)



758 Pospichal, Kvasni¢ka:

code(A). The proof of this thcorem immediately follows from the relations (4a) and
(4b).

It may scem, at first sight, that the application of both codes CODE(A) and code(A) is
fully cquivalent from the computational point of view. Unfortunately, such conclusion
is incorrect for the following reasons. An efficient algorithm for finding a canonical
numbering of graphs will strongly depend on the number of vertices that may be
potentially numbered by 1. According to the CODPE(A) these vertices should be of the
greatest valence' and for code(A) of the smallest valence. For graphs with “small densi-
ty” of cdges a number of vertices of greatest valence is usually considerably smaller
than the number of vertices of smallest valence. This means that graphs with small
number of edges (i.c. ¢ << p(p - 1)/2) are casily numbered by the canonical numbering
according to the “maximum” CODE(A). After all, a numerical construction of “maxi-
mum” code for molecular graphs is much more cfficient than its dual “minimum”
counterpart initially introduced by Randic*?.

For a fixed s bounded by 1 < s < p anadjacency matrix A € ¥, may be decomposed
onto block matrices as follows:

A Ay A ©
T AL Ay :
where A;; (Ay) corresponds to the left-up (right-bottom) corner submatrix of A, its
type is 1(A;)) = (5,8) [((A) = (p - 8, p — )] A rectangular submatrix A, of the type
t(Ap) = (s, p — §) will be expressed via its s-dimensional column vectors,

Ap = (60060 (10

Let a = (a;) and b = (b)) be two s-dimensional column vectors, they are equal, a = b,
ifa,=b, fori=1,2,..., 5. These vectors may be also related by @ > b (¢ < b) if there
exists such an integer 1 < i s sthata;=b), forj=1,2,..., i~ 1,and a; > b; (a; < by).

Definition 3. An adjacency matrix A € 7 is called nonincreasingly semicanonical

if for each 1 = s < p the column veetors ¢y, ¢a, .+ .., €, of the submatrix A}, satisly

€2 ez .z (I1a)

The adjacency matrix A € 7, is called nondecreasingly semicanonical if for cach
1 < s < p the column vectors satisly

C,sSCs .5 ¢ . (11b)

p-s
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Constructive Enumeration of Graphs 759

In order to keep our discussion as simple as possible we shall use, instead of the
clumsy terms “nonincreasingly semicanonical”, and “nondccreasingly semicanonical”
only the shorter term “semicanonical”. The type of semicanonicity and also the type of
canonicity under consideration will be always specified in advance. A graph determi-
ned by a semicanonical adjacency matrix will be called the semicanonically numbered
grapl.

Theorem 2. A canonical adjacency matrix is semicanonical.

Let us consider an adjacency matrix A € Fpy and let us assume that forafixed 1 <

< p, the vectors ¢, ¢, . . ., € of the rectangular matrix A;; do not satisfy the

- S
condition (/1a) [or the Condili(?n (11b) when the “minimum” code (4b) is used]. For
instance, the column vectors ¢ and ¢ (for 1 s 1< s 5) satisty ¢; < ¢, then there should
cxist a permutation matrix A, which corresponds to a transposition ol indices 7 and §
such that [RYAR]| > [A]. In fact, we have proved that an adjacency matrix which is not
scmicanonical cannot be canonical; a reverse form of this implication gives the above
theorem.

Theorem 2 represents an important necessary condition of the canonicity ol adja-
ceney matrices. [f we are looking for a canonical matrix in the subfamily ,’fg‘i , then it is
sulficient to consider only those matrices of j‘x,‘}{ that are semicanonical, all other adja-
cency matrices can be skipped.

Now we turn our atiention to the possibility of formulation of another type of
necessary conditions for canonicity of adjacency matrices. Let for some fixed I s s < p
the adjacency matrix (9) be rewritten in the so-called s-reduced adjucency matrix,

All Al'l
A=laLo | (12)

The matrix A, is formed from the adjacency matrix A in such a way that the right-
bottom block A, is substituted by a null matrix. The matrix A, is also an adjacency
matrix and belongs to a family 7., where q' = q. If the adjacency matrix A corresponds
to a graph G, then the matrix A, corresponds to a subgraph G, formed from G by
deleting all edges [f, j] € E(G), lori, JE {s+ 1,5+2, ... p}

Theorem 3. 11 an adjacency matrix A € Foq is canonical, then for cach I =5 < p the
s-reduced adjacency matrices A, are also canonical.

[ts prool may be done in a similar fashion as the proof of theorem 2.
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Canonical Numbering of Graphs

In this section the term “canonical” will be related to the approach based on the “maxi-
mum” code of adjacency matrices. The concept of canonical numbering of a graph G,
represented by an adjacency matrix A € _’}"p"i (i.c. the graph G is composced of p vertices
and g edges) consists in a finding a permutation matrix R € 5, such that (see (Sa))

cobi; = [RTAR]. (13)

If the graph G is canonically numbered, then the above relation is achicved automat-
ically for an identical permutation, R = E, all other permutation matrices that satisfy
(13) correspond to automorphisms of the graph. For some special cases of interest (¢.g.
for our constructive enumeration of graphs) we need only to know whether a graph is
canonically numbered or not; il we have found a matrix R which gives a string
satistying [ RTAR|] > [A], then the graph G is not canonically numbered.

The main effort in finding canonical numberings of graphs should be concentrated on
a process of achicving (13) by making usc of only those permutation matrices R e Sp
that lcad as fast as possible to the required result. A vertex of G which will be in this
process numbered by 1 should be of the highest valence, all other vertices will give
adjacency matrices with the first row smdllu than that onc of the matrix A
corresponding to the maximum code CODE(/. sce (6a). This process is considerably
accelerated by theorem 3, a canonical numbering may be successively constructed by
the trial and error method (implemented as a backtrack searching algorithm with a
branch and bound modification®?) in such a way that the created reduced adjacency
matrices are canonical. Furthermore, only those permutation matrices R € Sp may be
used (see theorem 2) that will produce semicanonical adjacency matrices. Combining
these two obscervations we get the very efficient method of canonical numbering of
graphs which, in a process of traversing through scarching tree, skips all permutations
that have no chance to produce the canonical numbering.

Semicanonical Numbering
Let G be a connected graph and Iet vy € V(G) be an arbitrary vertex (its sclection will
be specified in such a way that it can potentially produce maximum codce), then the

vertex set V(G) may be decomposed onto disjoint subsets as follows:

Dvy): V(G) = V,UV,U...UV,..., (14a)

V. = {vEV(G); d(v,vy) =i-1}, (for i=1,2,...), (14b)
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Constructive Enumeration of Graphs 761

where V) = {vy} and d(v, vy) is the distance between vertices v and v, (i.c. the Iength of
a shortest path connecting the vertices v and v;). The subset V; € V(G) may be interpre-
ted as the (1 = 1 )-th sphere of the vertex v, the distance between this vertex and a
vertex of V, is determined by d(v, vy) = i — 1. The decomposition D(v,) determined by
(14) may be schematically visualized by a graph with vertically situated subscts of
vertices. Going from the top to the bottom of graph the subset V| comes the first, then
come subsets Vs, Vi, .. .. A pair of vertices can be adjacent if and only if both belong
to the same subsct (i.c. from the same level) or they belong to different subsets lying on
juxtaposed levels.

Itis casy to sce that adjacency matrices assigned to graphs with vertex sets decompo-
sed in a manner specified by (14) may be written as follows.

1 A, O O

. Ay O 0 L

gl; A33 Ay . . . (15)
0 A, A,

The diagonal block matrix A;; corresponds 1o a subgraph G; € G induced by a vertex
subsct V; whereas the nondiagonal block matrix A ;, | corresponds to a bipartite subgraph
G,, € G induced by V; and V; |, where only those edges are considered that are simul-
tancously incident with a vertex of Vi and a vertex of V;, |. Since there do not exist
edges connecting two vertices with distance larger than 1, all other nondiagonal block

matrices A, forj > i + 1, arc null matrices.

IJ’
A semicanonicity of an adjacency matrix, expressed in the form (75), is dominated
by semicanonicities of nondiagonal blocks Ay, A,y Ay, . . .. Only if for a block A,

some column vectors happen to be mutually equal, a semicanonicity of its diagonal
counterpart A, |, ; may play a dominant rolec.

For the decomposition (75) we assign to cach subset V; an index subset U; in such a
way that by going successively from Vy via Vo, Vo, . . ., an actual index set U, is
filled-up by successive positive integers

ulpvy)l: {1,2,....p} = U,UU,UU,U... (16)
u, = {1},

2,3,V + 1},

Ue = {{V|+2,|V | +3, .., |V |+]|Vy| + 1},

S
|
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Let us assume that for a graph G (represented by an adjacency matrix AcE Fpq) and
a vertex vy € V(G) we know the decomposition D(v,) and the index system u|o(vy)]- A
semicanonical numbering of the graph G consist of a construction of the 1-1 maping,

R:V(G) = {1,2,..,p} = {1,2,...,p}. (17q)

lts construction will be successively carried out in a form of some restricted 1-1
mappings (their actual forms will be specified later in the text)

fori=1,2, ... This mapping assigns unambiguously to cach vertex from V. an index
from U;. The mapping may be simply interpreted as a permutation R = (ry, ray, . . ., 1)
of p objects (1, 2, .. ., p); entry r; determines an assigned number to the i-th vertex from
V(G).

The concept of semicanonically numbered graphs has been initially introduced (sce
comment above theorem 2) through its adjacency matrix which has to be also semi-
canonical. This definition of semicanonicity is not constructive, by applying it we can
only check whether a graph is semicanonically numbered or not. It could not be used
for a construction of semicanonical numbering of graphs. For our constructive enume-
ration of graphs it is vitally important to have a handy method which is able to
construct the semicanonical numbering of graphs irrespective of their initial numbering.

Let us assume that an arbitrary vertex vy € V(G) has been chosen as a vertex which
is numbered by 1, formally ry = vy The vertex set V(G) will be divided into two disjoint
subscts Y, and Ys, where the first (second) one is composed of all vertices adjacent
(nonadjacent) with the vertex vy,

Y, = I'(r), (18q)

Y. = (V(G)\ {vo})\ Y, . (18h)

The term T'(r,) corresponds to a subset of V(G) composed of all vertices that are adja-
cent with the vertex vy The subset Y| is equal to the subset V; of the decomposition
(14) carried out with respect to the chosen vertex vy, i.c. it determines the first sphere
of v, in the graph G whereas the subset Y, is a union of all remaining subsets Vi, Vy, .
. Y,= ViUV, U ... The next vertex which will be numbered by 2 is taken from the
subscet Y.

Let us assume that (i = 1) vertices have been already numbered by 1,2, .., i—1and
that we have available the following system of sets Yy, Yo, ..., Y. An arbitrary vertex
v € Y, is numbered by 7, r; = v and we create auxiliary sets
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Yk = I'(r)NY,, (19q)
Y\ {vPH\Y,  (for k=1) .
" - )
Y {Yk \Y, (for k=2,...,1) (19b)
for k=1, 2, ... t. That is, cach subsct Y, has been divided into two disjoint subsets

Y., Y., where the first (second) one is composed of those vertices of Y, that arc (not)
adjacent with the chosen vertex v. A sequence of auxiliary subsets Y\, Y, Y5, Y, ..
YO, Y is compressed in a new sequence in such a way that only nonempty subscets are
taken into account; we get Yy, Yy, ..., Y, where o determines a number of nonempty
subscts. This process is repeated until all vertices are numbered. The sets Y, Yo, oL, Y,
have the following simple interpretation: A set Y, (fori = 1,2, ..., 1) is composed of
those still nonnumbered vertices that are similar™ from the viewpoint of alrcady numbe-
red vertices, when edges between nonnumbered vertices are not considered, see Fig. 1.

A verification of the above recurrent method is carried out simply by tracing what its
single steps have done. In particular, the subsets Y, Y, .0 Y, are constructed in such
a way that analogs of the condition (/7a) are satisficd.

The described constructive method of semicanonical numbering of graphs is summa-
rized ina form of recurrent algorithm implemented in a pscudo-PASCAL form.

Algorithm 1.

1 Yi:=VG)i:=0;1:=1;
2 WHILE r > 0 DO
4 BEGIN /: =17+ I;v:=anarbitrary veriex of Yy,
S ro= v
Y=Y\ {v}
6 FOR k=1TO 1 DO
7 BEGIN Yk' :=T(ri) N Yk Yk = Yk \Yx' END;
8 ' =0;
9 FOR k:=1TO DO
10 BEGIN IF Yy = THEN BEGIN (' : =1 + 1; Yy : = Y END;
11 IFY" =0 THEN BEGIN (' : =1 + 1; Yr: = Y END;
12 END;
13 L=t
14 END;
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Since the concept of semicanonical numbering of graphs is given in a relatively
abstract way, the following illustrative cxample is highly reccommended for better un-
derstanding.

Example 1. The method of semicanonical numbering of graphs is illustrated on an
cxample of graph A displayed in Fig. 1. In the initialization step the role of a “refe-
rence” vertex is played by the vertex denoted by C. Decomposition D(C) and an index
system U[D(C)] arc

D(C): V,={C}, V,={B,D}, Vi = {A,E,F,G},
u[p(C)]: U, = {1}, U= {2,3}, Uy = {4,5,6,7}.

Single steps of the algorithm of semicanonical numbering for the given graph look as
follows:

Step 0. (Initialization.) Y, : = V(G) = {A, B, ..., G}, i=0.

Stepl. v=C,i=1,r=C, Y, ={B,D},Y,={AE, F,G}.

Step2. v=D,i=2,r,=D,Y, ={B},Y,={E,G},Y;={A,F}.

Step3. v=B,i=3,r,=BY, ={G},Y,={E}, Y= {A F}.

Stepd. v=G,i=4,r,=G, Y ={E},Y,={F},Y;={A}.

StepS. v=E,i=5rs=E Y ={F},Y,={A}.

Step6. v=F,i=0,r,=F,Y ={A}.

Step 7. v =A,i=7,r;=A, (algorithm is finished, the achicved scmicanonical

numbering is determined by the permutation R = (ry, ra, . . ., 19)).

]

The step 1 was carricd out over the first level Vi, whereas steps 2 to 3 and steps 4 to 7
were carried out over the second and third level, respectively. The constructed semi-
canonical numbering is shown in Fig. 1 (step 7), the corresponding adjacency matrix
(its upper triangle part) is

0't 110 0 0_0

We sce that this adjacency matrix is obviously semicanonical (but not canonical, for
this casc a vertex numbered by 1 should be selected B). The column vectors of nondia-
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gonal block A,; are nonicreasing, when going from its left-hand side. Similarly, the
diagonal blocks A,, and A;; are also separately semicanonical.
g 22 33

Canonical Numbering

The method of semicanonical numbering of graphs outlined in the previous subscction
can now be deployed to suggest an cfficient approach for the canonical numbering. The
approach will be formulated in a form suitable for the constructive cnumeration of
graphs; it will give only an answer to the question whether an s-reduced adjacency
matrix is canonical or not.

Let us consider an s-reduced adjacency matrix A € #,, of the form (12). We look for
a mapping/permutation R = (ry, ry, .. ., ;) that would produce a maximum code. To do
this it suffices to consider only those permutations that give, a priori, the semicanonical
adjacency matrices. This means that algorithm 1 may be simply modified in such a way
that it will produce an algorithm for checking the canonicity of an s-reduced adjacency
matrix.

c 1
B D
K Y,
A N Ny
A F 6 E L ] 2
STEP 0. STEP 1.
1 ] 1
Y, 2 3 2 3 2
Y3
Y3 Y2 Yz Y3 Y Y1
Y ki
STEP 3. STEP 4.
1
3 2
Y1 7 6 4 s
STEP 6 . STEP 7.

FiG. 1

An example of semicanonical numbering
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Algorithm 2.

1 Yﬂl) :={1,2,...,p}; Ui : = {k val(k) = valmax};
[:=1;1¢1:=1; canonicity : = truc;

2 REPEATIF U =9 THEN

3 BEGIN r; : = min(Ui); Ui : = Ui\ {ri}; Yﬁi) 1= Yﬁi)\ {ri};

4 FOR k: = 1 TO £; DO

5 BEGIN Yi' : = I'(ri) N ¥, ¥ : = i\ v&'; END;

6 Yﬂi):=Yﬁi)U{ri};j:=O;

7 FOR k:=1TO 1; DO

8 BEGIN IF Y’ =@ THEN BEGIN j : = j + 1; Yi* V). = v’ END;
9 IF Y’ =0 THENBEGIN:=j+ I; ¥i*D: = yi” END
10 END; tiv1:=41:=1;

1 FORk:=1TO ¢+ 1 DOFORj:=1TOpDO

12 IFje YW *Y THEN BEGIN /: = [ + 1; e . = j END;

13 IF row; = ROW; THEN

14 BEGIN IF i = s THEN

15 BEGIN i : = min {k; rk = k};

16 FOR j:=1TOi-1DOFORK:=1TOsDO
17 IF rk < k THEN Uj: = Uj\ {k};

18 END ELSE BEGIN i: =i + I; Ui : = Y{) END

19 END ELSE IF row; > ROW; THEN canonicity : = falsc

20 END ELSEi:=i-1;
21 UNTIL (i = 0) or (not canonicity);

The value of boolcan variable ‘canonicity’ is true (falsce) if the adjacency matrix is
canonical (not canonical). The set U, (sce row 1) is composed of indices that
correspond to vertices of maximum valence. The symbol ROW; denotes the i-th row of
upper-triangle part of the checked up adjacency matrix whereas the symbol row; deno-
tes the same row of transformed matrix RTA R (i.c. this row is composed of the entries
A ’Af.v ETERE A rP). The rows 14 to 18 contain the very cfficient accelerating
method based on the existence of automorphisms in the verified graph. The vertices
(indices) that arc similar®® with a vertex alrcady used are removed from sets U;, where
the index i is bounded by i < k, where & is the minimum value of an index sct for which
re = k. Here it is very important to note that this approach changes the value of index ¢
(determining the depth of scarching tree) to a lower value, i.c. a huge part of the
scarching trce is pruned by this approach. Many branches which may give only the
results already achicved are skipped.

In a difference from algorithm 1, the vertices are separately divided into subsets Y’s
for cach level of depth-first scarching tree. This is the main reason why these subsets
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are denoted by two indices, Y{; the lower and upper indices correspond to an index of
vericx and to a level of scarching tree, respectively.

Constructive Enumeration

The theory of canonical adjacency matrices (or canonically numbered graphs) elabo-
rated in the previous section represents an cffective tool for constructive enumeration
of all possible canonical adjacency matrices from the prescribed family 7. The basic
idca of this method involves a recurrent construction of all (s + 1)-reduced canonical
adjacency matrices from a given s-reduced canonical adjacency matrix. Repeating
recurrently this process until all rows in upper-triangle part of adjacency matrices are
filled by 1 and/or O entrics we have to arrive at canonical adjacency matrices that are
generated from the given s-reduced canonical adjacency matrix. Let A be an s-reduced
canonical adjacency matrix, its form is [cf. Eq. (12)]

A= 0)

A'l.l Al2
AL o |°

where the left-up corner submatrix Ay is of the type (s,5) whercas the submatrix A 5 is
of the type (s, p — 5). The submatrix A, may be expressed by its column vectors as
follows

A = (e 6.6 ). (¢2))

The process of an extension of the s-reduced matrix A to an (s + 1)-reduced matrix

) Al AL
A = AT O (22a)
is uniquely determined by its submatrices
A = [Ane 221
=g (220)
, _ C2 c.x PR .CP_s _ o L )
A, = ((12(13 o “p-s) = (¢), iy o neyy), (22¢)

where
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¢ =" (for i=2,3,...,p-s) (22d)

arc new column vectors of A), formed from the column vectors of A, by adding {rom
bottom an integer o = 0 or «t; = 1. These added entries ag, g, . . ., o, _ determine,

fact, whether the resulting extended (s + 1)-reduced adjacency matrix will be canonical
or not. What we can do 1o ensure that the matrix A" will be at least potentially cano-
nical? According to thcorems 2 and 3 this matrix should be semicanonical, therefore

the entries y, (g, « . ., 4 _ are sclected in such a way that

P-
¢z =z . (23)
Unfortunately, the produced adjacency matrix A’ is not automatically canonical, it is
semicanonical and all its smaller reduced adjacency matrices are canonical. Therefore,
we have to check whether a produced matrix A’ is canonical or not. If it is not, then this
matrix is rejected from our forthcoming considerations. These ideas are summarized by
the following theorem.
. al

Theorem 4. Canonical (s + 1)-reduced matrices Al AR ... produced by an
extension of the given canonical s-reduced adjacency matrix A represent all possible
noncquivalent canonical (s + 1)-reduced ad acency matrices which have the initial
matrix A, as the s-reduced adjacency matrix.

In special cases we are able to say in advance that the adjacency matrix A" will be
canonical or noncanonical. First, if all entries «; from (22¢ - 22d) are equal to zero,
then the adjacency matrix A’ is automatically canonical. This simple property of our
extension process immediately follows from the fact that there cannot exist a permu-
tation R = (ry, ra, . . ., ) represented by a permutation matrix R which would produce
an cquivalent adjacency matrix with code greater than that one of the original adja-
cency matrix A'. In the opposite case the parental adjacency matrix A could not be
canonical. Sccond, let R = (ry, ray, . . ., ry) be a permutation represented by a permu-
tation matrix A, and let us assume that the codes of Aand its equivalent counterpart are
the same, [A] = [R'AR], i.c. aj=d,, forcach 1 i < j s p. Now, let us assume that
for a given pair of indices { and j we hwc rr=s+ lands+ 1 <rj<p, then a = 0if

.= (). This property must be satisfied since in the opposite case we may find a f)crmu-
ldll()l\ matrix R which will produce a code [A”|=[ RTA'R|, which would be greater than
[A’]. Following this observation, when we are extending the s-reduced canonical adja-
cency matrix A to an (s + 1)-reduced adjacency matrix A’, we have to set «, = 0 in the
process of creation of the submatrix Ap [sce Eq. (22¢)]. It means that we have a simple
criterion of nullity of some entries «;'s from (22¢) which may be simply cmbedded in
the framework of canonicity check of the parental s-reduced adjacency matrix.
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If we have to construct only the connected graphs, then there exists a simple criterion
of connectivity of graphs that arc semicanonically numbered. If a column of entries in
the upper-triangle part of adjacency matrix is composed entirely of null entries, then a
graph corresponding to this adjacency matrix should be disconnected. In this case the
adjacency matrix may be expressed as a block sum of two submatrices that correspond
to scparate components of the graph.

Theorem 4 cnables us to suggest a very simple and effective method for constructive
cnumeration of all possible noncquivalent adjacency matrix from the prescribed family
Fpy- The clfectiveness of the method is based on the fact that only noncquivalent adja-
cency matrices are formed. According to thcorem 4 entire construction of adjacency
matrices from the family F,, may be organized in a recurrent manner. We start from a
I-reduced adjacency matrix in which the submatrix A, is a row vector composed of (p - 1)
cntrics. From this matrix we form all possible noncquivalent 2-reduced adjacency
matrices by adding to the previous one a second row composed of (p - 2) entrics. In
general, for the s-step, when all canonical (s - 1) reduced adjacency matrices have been
alrcady constructed, we shall construct all their extensions, i.c. canonical s-reduced
adjacency matrices. This simple recurrent procedure is stopped when s becomes cequal
to p = 1, from the produced adjacency matrices we select those, belonging to the
prescribed family 7. To reduce the total number of produced adjacency matrices we
check in cach step the excess of 1 entries in produced adjacency matrices, adjacency
matrices with a greater number of 1 entries than the prescribed number ¢ are skipped in
the forthcoming step. The basic principles of this method are illustrated in Fig. 2.

Each level in this figure corresponds to a number of the rows filled in the adjacency
matrix, e.g. the first level composed of two graphs corresponds to an adjacency matrix
with the first row completely filled whereas other rows are still unfilled. In order to
produce maximum codes of graphs a vertex numbered by 1 should be of greatest
valence. Since we produce graphs with 5 vertices and 6 edges, the “greatest” valence is
bounded from above (below) by 4 (3). Therefore in the first level we have only 2
starting structures. The sccond level is composed of graphs which have been produced
by filling the sccond row in adjacency matrices, ete. We can see that the redundancy in
production of graphs is minimal, the presented figure does not contain any blind
branches, cach was cut at the beginning.

Enumecration of Graphs with Prescribed Valences

The present method of constructive enumeration of graphs is very well suited when
vertex valences of graphs to be constructed are prescribed. In addition to predicting
some null entries in a row just created according to an automorphism of the current
subgraph, other criteria could be appliced for filling up the rows that are still empty.

Letus now construct graphs that are determined by a prescribed graphical® sequence
of valence vertices. The approach can be best desceribed by the following example.
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Example 2. Suppose, that the graphs to be constructed are determined by a given
graphical sequence of valences of vertices (333111), i.c. three vertices of the valence 3
and three vertices of the valence 1. Now, let us have two rows of connection matrix A
alrcady gencrated.

011100 011100

101010 101010

11 _ o |r1oo0o01

10 0 100000

01 0 010000

00 0 001000
A A

-
~

-
~N

FiG. 2
An example of recurrent construction of all connected graphs composed of five vertices and six edges. All

graphs are canonically numbered
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TABLE |
‘Total numbers of connected nonisomorphic graphs with p vertices and g edges

P
q
3 4 5 6 7 8 9 10
2 "' 1
I <0.1
n: 1
I <0.1
3 n' 1 2
! <0.1 0.1
" 1 2
I <0.1 0.1
4 n' 2 3
I <0.1 0.1
" 2 3
r <0.1
5 !t 1 5 6
L <0.1 0.1 0.2
" 1 S 5
I <0.1 0.1 0.1
6 ' 1 5 13 11
¢ <0.1 0.1 0.2 0.2
" 1 5 12 9
I <0.1 0.1 0.1 0.2
7 ! 4 19 33 23
/ 0.1 0.2 0.5 0.6
" 4 17 29 18
I 0.1 0.2 0.4 0.4
8 n' 2 22 67 389 47
/! 0.1 0.3 1.0 1.8 1.4
" 2 18 56 73 35
r 0.1 0.2 0.8 1.4 1.1
9 ! 1 20 107 236 240 106
! 0.1 0.3 1.6 4.4 5.9 4.3
" 1 14 79 182 185 75
r 0.1 0.2 1.2 33 4.4 33
10 n' 1 14 132 436 797 657
! 0.1 03 2.1 8.4 16.8 19.5
" 1 8 79 326 573 475
I 0.1 0.1 1.3 5.5 118 14.1
11 ! 9 138 814 2075 2678
! 0.2 2.4 13.8 39.4 64.1
" 3 59 430 1278 1792
I 0.1 1.1 7.5 242 43.1
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TaBLE |
(Continued)
P
q
3 4 5 6 7 8 9 10

12 ! 5 126 1169 4 495 8 548
I 0.1 2.4 20.0 80.7 178.3
" 1 31 427 2 161 4875
I <0.1 0.7 8.1 41.3 105.1

13 2 95 1454 8 404 22950
I 0.1 2.1 26.0 146.2 4382
" 9 208 2 768 10 162
I 0.2 6.8 58.0 213.3

14 n' 1 64 1579 13 855 53 863
! 0.1 1.7 30.2 235.6 966.6
" 2 134 2616 16 461
I <0.1 3.7 63.5 364.7

15 ! 1 40 1515 20 303 112 618
4 0.1 1.2 31.4 3427 19205
" 35 1714 20 346
I 1.1 49.3 501.8

16 " 21 1290 26 631 211 866
/! 0.7 30.1 456.4 3473.2
" 6 707 18 436
I 0.1 24.8 5232

17 ! 10 970 31 400 361 342
! 0.4 26.0 560.4 58042
" 154 11 477
I 6.8 390.1

18 o' 5 658 33 366 561 106
! 0.2 20.7 629.8 8 984.1
" 16 4399
I 0.5 185.8

19 ' 2 400 31 996 795 630
! 0.1 15.0 646.3 12 816.8
n 845
i
r 46.5

20 ! 1 220 27 764 1032 754
I 0.1 10.0 611.0 16 822.2
" 59
I 3.9

1 . . 2 .
n' number of graphs, valences of vertices are not restricted; n” number of graphs, valences of vertices are
12 . . . AT . .
smaller or cqual 1o 4: 1!, ¢* CPU times in seconds for PC AT compatible with 20-Mllz clock.
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As there has to be generated three rows for vertices with valence cqual to one, and the
first three rows correspond to vertices with higher valence, the rows for vertices with
valence cqual to one are only the last three ones. As the fourth and fifth row alrcady has

u]n u]ﬂ

its entry, the only remaining possibility for another entry is on the sixth row
and third column (or vice versa). Then the sequence of valences is obtained and all
remaining empty entries can be filled by zeros. For generation of another matrix we can
return to the second row. Generally, we can define for cach row, which is not yet filled,
a maximum number of “1” its entrics, which it would achicve by filling all empty
cntries by “1”. For this row we can define also a minimum number of 1-entrics, which
it would achicve by filling all cmpty entrics by “0”. These numbers for the sct of rows
can be compared with the required sequence of valences of vertices and according to

u]n

that some rows can be filled immediately cither by cntrics or by “0” entries. For
check of canonical numbering all the empty entries should be filled by zcro. When
none of permutation of required sequence of valences of vertices match the bounds of
maximum and minimum valences given by alrcady generated matrix, the current matrix

is skipped?,

RESULTS AND DISCUSSION

For simplicity the whole method is described for constructive enumeration of simple
graphs, but after a slight modification it can be used for enumeration of multigraphs
with vertices cvaluated by atomic symbols — molecular graphs. Its main advantage is
that it is not based on any a priori given heuristics or restrictions like a database of
structures containing cycles, and in spite of that it is cfficient. Faradzhev’s concept of
semicanonical adjacency matrices represents a very efficient theoretical tool helping to
reduce considerably an enormous number of created graphs in which the canonicity of
numbering has to be checked. Morcover, in the framework of the method simple crite-
ria_based on an cxistence of automorphisms in a graph just extended can be
straightforwardly introduced. In Table I are presented results of our program written in
C language for constructive cnumeration of graphs with prescribed number of vertices
and cdges and/or with a prescribed sequence of vertex valences. All results given in this
table were checked by an independent program!®. We have constructively enumerated
all connected graphs that are composed of from three to ten vertices and of al most
twenty edges. What is very impressive in our numerical results, the program runs on an
IBM PC-AT compatible (with 20-MHz clock) and generates 25 — 50 graphs (with ten

vertices) per second.
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